

Current-induced magnetization dynamics

Mark Stiles – NIST

Tingyong Chen, Hongki Min, Keith Gilmore, Ion Garate, Christian Heiliger, Mark Hoefer, Yi Ji, Jiang Xiao, Jack Bass, C.-L. Chien, Michael J. Donahue, Allan H. MacDonald, Jacques Miltat, Daniel C. Ralph, Robert McMichael, Wayne M. Saslow, Thomas J. Silva, and Andrew Zangwill

Interaction between current and magnetization

Hard Magnets

Motors, Generators

Soft magnets

Memory

Interaction between current and magnetization mediated by

Magnetic fields

Spin currents

Spintronics: Exploiting the electron's other degree of freedom

Spintronics

Magnetic recording

Giant Magnetoresistance (GMR) The Magnetic Configuration Affecting the Current Flow

Magnetic Random Access Memory (MRAM)

Spin-transfer torques (STT)

the Current Flow Affecting the Magnetic Configuration

Magnetic recording

Hard Drive Recording Density

Giant Magnetoresistance (GMR)

Discovered in 1988 in FM/NM/FM multilayers - 2007 Physics Nobel prize to Fert and Grünberg

One minute of (itinerant) ferromagnetism

- Exchange energy gain for parallel spins.
- Spins delocalized.
- Energy cost for being parallel (kinetic vs. potential).
- Net energy gain for Fe, Co, Ni, \Rightarrow spin imbalance

$$\mathbf{j} = \mathbf{j}_{\uparrow} + \mathbf{j}_{\downarrow} = (\sigma_{\uparrow} + \sigma_{\downarrow})\mathbf{E}$$

Two electric currents flow in parallel. Electrical conductivity is spin-dependent.

Giant Magnetoresistance (GMR)

Both Current in Plane (CIP) and Current Perpendicular to the Plane (CPP)

Tunneling Magnetoresistance (TMR)

Djayaprawira *et al.* APL **86**, 092502 (2005)

Magnetic Random Access Memory (MRAM)

- Non-volatile
- Potentially low

power

- CMOS compatible
- Radiation hard

External Currents Used to Flip Bits

Writing

This writing scheme does not scale well. Can Spin Currents Flip Bits?

GMR is the Magnetic Configuration Affecting the Current Flow.

Spin Transfer Torque is the Current Flow Affecting the Magnetic Configuration.

Co

Switching a GMR Element

Cu

J. Z. Sun et al., JAP (2003)

(a)

H

Nanopillar as a spin polarizer/analyzer. Step 1: Polarize the Current

quantitative work: Boltzmann equation, drift-diffusion equation

Step 2: Analyze the Current

What happens if the polarizer and analyzer are not parallel?

 $\tau \propto \Delta \mathbf{L}$

Angular Momentum and Analyzers: Optical Equivalent

Optical Polarizer Feels a Torque

Spin-dependent reflection/transmission

Simple Limit: $|\mathbf{R}_{\downarrow}|^2 = 1$ and $|\mathbf{R}_{\uparrow}|^2 = 0$

What if analyzer is rotated by 90° with respect to polarizer?

Absorption of Transverse Spin Current Simple Limit: $|\mathbf{R}_{\downarrow}|^2 = 1$ and $|\mathbf{R}_{\uparrow}|^2 = 0$

Switching by Amplification of Fluctuations

Asymmetric switching

J. Z. Sun et al. JAP (2003)

Toggle MRAM is available, but does not scale well. What's needed to make STT-MRAM viable?

Desired path

Toggle MRAM is available, but does not scale well. What's needed to make STT-MRAM viable?

Desired path →Need transistor Alternate path

Toggle MRAM is available, but does not scale well. What's needed to make STT-MRAM viable?

Desired path →Need transistor Alternate path • Therm

- Thermally stable bit
- Large margin between read and write currents
- Low write current (single transistor)
- Manufacturable margins

From Katine and Fullerton

A possible way to pack more information per circuit area: Magnetic Racetrack Memory

Spin transfer torques in nanowires

Spins adiabatically follow the magnetization

Domain wall

Electron flow

Spins follow magnetization direction

Reaction torque on magnetization

Domain wall translates

Metal-Based Spintronic Applications

- Hard Disk Drive
- MRAM
- Racetrack memory
- Sensors

- \$1 B to \$30 B market
- Automotive, Process control, Medical, Military/Security
- Logical Processing

Wouldn't it be nice if ...

Processor

Information processing \rightarrow CHARGE transport in SEMICONDUCTORS

Integration: Non-volatile memory Reprogrammable logic Semiconductor spintronics Cheaper, faster, better???

Spintronics in Metallic Systems

 Why Non-volatile memory Magnetic field sensitivity Lower dissipation?

GMR: using spins to influence current
Hard Disk Drives
Sensors
MRAM

• Spin Torque: using current to influence spins

For more information <u>http://cnst.nist.gov</u> For reviews, see J. Magn. Magn. Mater. v. 320 (2008)