

YOUR PARTNER IN RESEARCH AND INNOVATION

Plasma-Based Tools for Innovative Solutions to Engineering of Advanced Materials

Andranik Sarkissian & Plasmionique Team

About Us

Plasmionique Inc. Founded in1999 <u>Location:</u> Parc Scientifique de Varennes, Research laboratory Installations on INRS premises

<u>Competencies:</u> Complex System Integration Plasma Technology

Our mission:

proliferation of the applications of plasma processes to surface engineering and Synthesis of advanced materials

<u>Clients & partners:</u> Research Centres (university and governement)

What is a Plasma

- Plasma is the 4th state of mater
- (Over 99.9% of Universe is in Plasma State)
- States of Matter

- Mix of charged particles, neutral atoms, molecules, radicals and photons
- We Can speak of Plasma State when there are sufficient number of charged particles to change the electrical characteristics of the gas

Ionization Process: A + e -> A + e + e

A + e -> A + A + e + e Also Photoionization

Excitation /Fragmentation A + e -> A + e A + e -> A + A + e + e A* -> A + hv

Plasma Variety

Plasma-Surface Interaction

- Implantation (1) (E_k>10 keV)
- Sputtering (2)
 - Cleaning (8) $(E_k < 2 \text{ keV})$
 - Deposition (4) $(E_k < 1 \text{ keV})$
- Etching(3) (E_k~ few eV)
- Deposition
 - Physical (4) (~ 0.5 to 50 eV)
 - Chemical (5,6)
- Surface Activation(7) (E_k ~ few eV)
 - Particles
 - Photons

electrons > Plasma Fragments > Processes

- Internal R&D
 - TOOLS and System Development
 - Process Development
- Collaborative R&D
 - Applications
 - Process Development

R et D internal

Collaborators

INRS-EMT (since 1999, ongoing)

Prof. Claude Boucher (2001-2004) MRST, (Fusion) Prof. François Martin (2003), NSERC-CRD Prof. Federico Rosei (depuis 2005), NSERC-CRD Prof. Barry Stansfield (depuis 1999) MRST, CRD Prof. Alain Pignolet (depuis 2006)

Biomaterial Institute (Centre Hôpitalier de Université Laval)

Prof. Diego Mantovani (depuis 2000), CRD Project, NSERC-Strategic project (Biomaterial) Prof. Gaetan Laroche (depuis 2000), NSERC-Strategic project (Biomaterial)

Université Laval (Dept. Adv. Mat., wood Science)

Prof. Bernard Riedl (NSERC-CRD)

Université de Montreal

Prof. A. Nanci (depuis 2005), CRD (Dentistry)

Prof. Luc Stafford (depuis 2008), CRD (Physics)

McGill University

Prof. D. Perepichka (depuis 2005) NSERC-CRD

University of Saskatchewan

Prof. Ákira Hirose (depuis 2001), NSERC-CRD Prof. Chijin Xiao (depuis 2001), NSERC-CRD Prof. Michael Bradley (depuis 2006)

University of Western Ontario

Prof. Andy Sun (depuis 2005) Dr. James Noel (depuis 2006) IREQ-HQ (1999-2001) Dr. Alain Côté Dr. Réal Décost

Groupe CTT (since 2000-2004) Dr. Dominic Tessier

DRDC- Valcartier (2006)

Dr. Philppe Merel (depuis 2006)

FP-Innovation-FORINTEK (since 2008)

Dr. Vincent Blanchard Dr. Pièrre Blanchet

ENEA- Frascati, Italy (1999 - 2003)

Dr. Riccardo de Angelis

CEA- Cadarache, France (depuis 2002)

Dr. James Gunn

Research Institute of Transplantology and Artificial Organs, Moscow- Russia (2002-2005) Prof. Victor N. Vasilet

Cleaning Optical Networks

Motivation

 A typical Problem on High power femtosecond laser infrastructures (200 TW) is the Contamination of Compressor Gratings and Mirrors
 Similar problem for Synchrotrons

Objective

Develop Solution for in-situ cleaning

XPS and Reflectivity Measurements

wavelength

Synthesis of Thin Film by Pulsed Laser ablation

Collaboration with ALLS (prof. A. Pignolet)

ZnO

Laser Pulse: 20 fs to 20 ns

Laser Energy: 4.5 mJ to 45 mJ

All other parameters were constant

Rotary Target: ZnO Substrate Temperature: RT

Magnion Series SPLD-421

Synthesis of the Allotropes of Carbon and DLC

- The arrangement of carbon atoms determine the chemical and physical characteristics of the material
 - Graphite sp2
 - Nanotube Rolled
 Graphite
 - Diamond sp3
 - etc

Microwave-PECVD Synthesis

Graphite and Diamond Coatings

Substrat: P-type (100) Si Sample Preparation: Ultrasonically scratched in diamond powders containing solutions Operation Condition Microwave power: 1000 W, Operation Pressure: 30 Torr, Total Gas Flow rate: 50 sccm Time: 2-8 h

Substrate temperature: 520 C

- Various Mixture of H2 and CH4
- Substrate Temperature ~ 550 degree C
- Increased ratio of sp3/sp2 with decreasing ratio of CH4/H2

Synthesis of CNT

Collaboration: Dr. P. Merel, et al., DRDC & Prof. A. Sun, et al., U. Western Ontario

Motivation

- -Interesting Physical Properties
- -Variety of Applications
 - Hydrogen Storage
 - Field emission
 - Nanoelectronics/ optics
 - Sensors
 - -Composite

-etc

Objectives

- Simplifying Synthesis
 - -Reduced Temperature
- -Controlled Synthesis
 - Selectivity of Physical properties

Using PECVD and PVD Processes

- Typical Process Steps
- 1- Buffer Layer (Magnetron sputtering)
- 2- Deposition of Catalyst (Magnetron sputtering)
- 3- Heat Treatment (nano particle formation)
- 4- Reduction of Oxide (H2 plasma assisted)

5- Synthesis from Hydrocarbon gas mixture: PECVD

Advantage of PECVD vs CVD: Lowers Synthesis Temperature

Synthesis of CNT RF-PECVD

In situ deposition of :

1) Buffer layer

2) Catalyst

Followed by

3) Pre treatment

4) Synthesis

without exposing system to air

PI

LOW Temperature Synthesis

Synthesis of CNT (MW-PECVD)

Improving Haemocompatibility of PTFE (Teflon)

Motivation

Collaboration with l'Université Laval (profs. Mantovani et al. (U Saskatchewan), Hirose, et al., Vasilet (Moscow)

- PTFE is currently a material of choice for vascular prosthesis

- After implantation, thrombosis and restenosis, are often observed

- 65% of synthetic prostheses must be replaced in the 10 years following implantation, usually due to thrombosis

Objectives

Carbon-based coating of PTFE, using plasma-based deposition techniques, has been studied as a possible route to improve the bio- and haemocompatibility of PTFE implants

Coating on PTFE

- Reactive Magnetron Sputter Deposition Technique
- Graphite targets
- Sample temperature <50°C.

Improving Hemocompatibility of PTFE (Teflon)

PTFE			
atment A	12KN WEEG 1841 19 <u>80</u> 06682	12KN X3500 T04 <u>1 T0'O</u> N NEB92	
tment B	таки жеёр трет то <u>о</u> п ивоор	T2KN X3596 T <u>941 19'6</u> n896	

Surface After Contact with Whole Blood

Platelet adhesion

- 6

PTFE	ALC: NO
9.3% N	c
30.3% N	•
34.1% N	9

200	
	and the second second
80 ag	9

Improving Osseointegration

Objectives

Modification of the surfaces of Ti an Ti-based alloys for improved osseointegration of medical implants

Motivation

- Titanium and its alloys are a material of choice for implants used in dental or hip replacement procedures

- Bone adhesion is a critical issue

Collaboration with INRS-EMT,McGill and UMontreal (profs. Rosei, Prepichka, Nanci)

Surface Treatment Methods

- Surface Coating
- Selective Surface

Nanotexturing

- Surface Doping
- Hybride Techniques

Improving osseointegration

Ca Ion Implantation

Ca Sputter deposition and ion mixing

Surface Modification Cardiovascular Stents

Objectives

- Improving Treatment of Artery BI
 - Balloon Angioplasty
 - Stenting

Motivation

• Restenosis Rate (about 30%-40%)

Approach

- Surface Modification of Stents
- Coating (Polymer, Drugs)
- Ion Implantation of Radioisiotopes

- Endovascular brachytherapy (stents)
 - Radioactive stents
 - > ³²P: pure beta-emitter
 - \succ E_{max} = 1.7 MeV
 - Path in biological tissues: 2-4 mm
 - Half-life: 14.2 days

PBII Application

- Efficient
- Compact
- Minimize Contamination

PBII of Radioisotopes

Process Steps

- Sputtering for P injection in Plasma
- Ionization of P by Ar Plasma for
- Extraction and Implantation in Stents

PBII of Radioisotopes

Radioactive Stents DO NOT WORK

- Accelerate Restenosis at Tips

• Other Applications

> Occlusion of aneurysms

-J. Raymond, P. Leblanc, A. C. Desfaits et al., Stroke 33 (2), 421 (2002)

ß-emitting Short life-time radioisotopes are POWERFUL TOOLS to study PLASMA TRANSPORT

Other Applications

 Material Erosion, Transport and Redeposition Study in a Nuclear Fusion Reactor

- The plasma state of matter, and in particular, the nonequilibrium plasma offers interesting opportunities for Surface Engineering and Advanced Material Synthesis
- The Plasma-Assisted processes impacts variety of field
- The environmental concerns and the requirements for improved products are the driving forces for the proliferation of Plasma Technology